
A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

1

A Review on Comprehensive File Synchronization Algorithms for

Effortless Local and Cloud File Management with Conflict Resolution
1Mr. Sandip Dabre, 2Prof. Sachin Vyawahare, 3Prof. P. P. Rane

1Student, CSE Department, Rajarshi Shahu College of Engineering, Buldhana

2Assistant Professor, CSE Department, Sanmati College of Engineering, Washim
3HOD, CSE Department, Rajarshi Shahu College of Engineering, Buldhana

1sandip.dabre87@gmail.com, 2vyawhare01@gmail.com, 3koltepallavi200@gmail.com

Abstract:

The majority of application data and software in the context of cloud computing are moved to the cloud computing

data center and network service provider; all application and information management and maintenance tasks are

left to the cloud service providers. While cloud computing offers ease, it also presents a number of security risks.

This paper first examines the design of cloud computing uses within the organization. It then discusses and studies

virtualization, cloud computing, large-scale, dynamic, and extensible cloud computing, based on the security of

cloud computing challenges, summarizes the benefits, and proposes a dynamic hash authorization scheme. The

empowerment management system is shown with the user aspect as the letter and management technologies as

the side. Pay attention to data encryption technology. Cloud storage security solutions come from data, design,

and devaluation. Furthermore, we propose a combination of the cloud security standard and the evaluation system,

improving the multi-dimensional cloud protection system and its implementation in light of the issues with the

information security standard.

Keywords: Cloud Computing, Data Center, Extensible Authorization, Data encryption

INTRODUCTION

Sharing digital files over a network is a common application of the networking technology. Files can be

shared between: a) Users and machines (eg: when one downloads a file from a server, or uploads a file

to a server), b) Machines (eg: automated backups), c) Different users (through machines: uploading the

file to a server, from which the other party can download it; directly: using P2P file sharing services). It

is common nowadays for users to share files across their own devices connected over a network using

synchronization services such as Dropbox [1] or Google Drive [2]. They usually do so by allowing a

user to upload their files from one device to central servers, and allowing other devices owned by the

same user to download them from those servers. Note that the users also have the option to share their

files with others, or make them public. Peer-to-peer (P2P) based synchronization systems split the files

into chunks (or pieces), which are then replicated on a subset of peers. A cloud-based synchronization

system (also a cloud-based storage service) is used to store users’ files in a central server, owned

and governed by a certain entity (eg: an enterprise, or a small company). Users upload their

files to this server from one device, and download them on another (or on the same device, in

A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

2

case the user loses the original file). Users can also share their files with others, and depending

on the service provided, a cloud-based synchronization service can be extended to provide a

collaboration platform to the users. These services are provided across many different

platforms, using web as well as native application development technologies as their front-end.

Some of them provide desktop applications that act as drives connected to the PC, to provide a

seamless interaction with the actual cloud drive. These services usually employ a freemium

model: a fixed amount of initial storage is given for free, with limited feature set, while allowing

users to upgrade to a higher plan with more storage and additional features. A good comparison

of some of the most popular cloud storage and synchronization services can be seen in [8]. Such

a model makes cloud services much more accessible and convenient to the users.

A. Objectives

 To ensure that changes made to files are synchronized across all devices in real-

time or near real-time, minimizing delays in accessing the latest version of a

file.

 To implement mechanisms to detect that arise when the same file is edited on

multiple devices simultaneously, ensuring that data integrity is maintained.

 To optimize the synchronization process, minimizing the amount of data

transferred and reducing synchronization times.

 To access previous versions of files and open them if needed.

 To scale efficiently as the number of users and the time of conflict.

B. Challenges of file synchronization

File syncing often presents security concerns to enterprises whose employees use consumer-grade

applications to access business files. In addition to creating "shadow IT," these applications may also

contain vulnerabilities that threat actors can exploit to compromise the file and the organization.

Another challenge with file syncing is loss of centralized control. Remote and hybrid teams often sync

business files to their personal devices, especially if the firm has a "bring your own device" policy in

place. If members of these teams leave the organization, the files will still be available on their devices.

The company might not be able to control the files on the ex-employee's device, much less wipe them

to protect enterprise data. Accidental moves and deletes are another challenge with file sync. To

mitigate these concerns, it's important to use file sync software that enables file recovery. The software

should also provide capabilities such as granular permissions, notifications and audit logs so managers

can better control files as well as prevent accidental moves and deletes.

A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

3

I. LITERATURE SURVEY

Csirmaz et. al. states that synchronizing diverged copies of some data stored on a variety of devices

and/or at different locations is an ubiquitous task. The last two decades saw a proliferation of practical

and theoretical works addressing this problem. File synchronization is a feature usually included with

backup software in order to make is easier to manage and recover data as and when required. File

synchronization usually delivered through cloud services. Dedicated file synchronizing solutions

frequently come with additional tools not just for managing the saved data, but also to allow for file

sharing and collaboration with stored files and documents. These cloud storage services are easily

accessible for the end-user because the service front-ends are very well integrated into web clients as

well as desktop and mobile environments. Simple user interfaces hide the complex and sophisticated

service back-ends. Collaboration services are frequently integrated into the “cloud storage”

environment. For example, Google Docs is an application layer integrated into Google Drive storage,

Office 365 is integrated with One Drive storage and Dropbox Paper service is an extension of

[1]

Dürsch et. al. states that an application that enable digitally conducting QDA are grouped as Computer

assisted qualitative data analysis software. One representative of Computer assisted qualitative data

analysis software (CAQDAS) is called QDAcity1. QDAcity is a cloud-based web application,

developed and operated by the Professorship for Open Source Software at the Friedrich-Alexander-

Universität Erlangen- Nürnberg. QDAcity provides an environment for multiple analysts or

researchers to collaboratively conduct QDA. Since QDA deals with big amounts of fuzzy and

subjective data, enabling researchers to share and discuss different interpretations, ideas, and

conclusions can be very beneficial for the process of QDA. The approach of enhancing a process by

promoting close collaboration and "shrinking the feedback loop" can also be found in other fields.

Agile approaches of software development like Extreme Programming (Beck, 2000) serve as examples

of this. However, currently QDAcity only allows the simultaneous collaboration of multiple

researchers in a shared project, but not on a more granular level in a shared document. Real-time

collaborative editing of a shared document is a classic form of digitally enabled, close collaboration.

[2]

Martins et. al. states that in recent years the cloud has become ubiquitous. Many apps and services

with users spread across the world resort to these solutions. Cloud applications with global scale user

base like social media tend to resort to distributed databases that prioritize lower latency over strong

consistency. Such solutions don’t require coordination which would require reads and writes to contact

a majority of replicas in a communication process that can cross continents, penalizing performance.

This kind of of applications along with the database replicas usually run in multiple datacenters.

Instances are usually geo-replicated to accommodate users from different parts of the globe with fast

response time. When the amount of replicas grows it also becomes important to partition data in a way

A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

4

that doesn’t break the fault tolerance guarantees of replication, since having every piece of data in

every replica of the database might not be necessary and can definitely become very expensive. In

such a setting it is not enough to have database replicas close to the users. The coordination between

replicas performing reads and writes also needs to be minimized in order to achieve the desired low

latency. Consider that you have a local server close to a client. In order for a client database operation

to complete, it would need to contact a majority of database instances. This would completely break

the desired low latency. For this reason weak consistency models have been rising in popularity

recently. [3]

II. PROPOSED SYSTEM

A. Proposed System

 File Synchronization Algorithm

 File comparison algorithms are used to determine the differences between two files. There are

several approaches to file comparison, each with its own advantages and disadvantages. Here

are a few common algorithms:

 Step 1: Byte-by-byte comparison: This is the simplest form of comparison where each byte of

the files is compared. It's fast but doesn't provide detailed information about the differences.

 Step 2: Line-by-line comparison: This approach compares files line by line, which is useful

for text files. It can highlight added or removed lines but may not detect changes within lines.

 Step 3: Token-based comparison: This method breaks the files into tokens (words, phrases,

etc.) and compares them. It's more flexible than line-by-line comparison but requires

tokenization logic.

 Step 4: Tree-based comparison: For structured data like XML or JSON, a tree-based approach

can be used. It compares the structure and content of the trees, highlighting differences at

different levels of granularity.

 Step 5: Hybrid approaches: Some tools use a combination of these algorithms to balance speed

and accuracy based on the type of files being compared.

3.3.2 Working of Checksums

Checksums are widely used in file synchronization and conflict resolution to ensure the integrity of files

and detect differences. Here's how checksums can be used:

 Generating Checksums: Each file is assigned a checksum, which is a unique identifier

calculated based on the file's content. Common checksum algorithms include MD5, SHA-1, and

SHA-256.

A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

5

 Comparing Checksums: When synchronizing files, checksums are compared to determine if

the files are identical. If the checksums match, the files are considered identical. If the

checksums differ, it indicates that the files have different contents.

 Conflict Resolution: In case of conflicting changes, checksums can help identify the source of

the conflict. For example, if two users modify the same file, their changes can be compared

using checksums to determine the extent of the differences.

 Checksum Verification: Checksums can also be used to verify the integrity of files during

synchronization. By recalculating the checksum of a file after transfer, it can be compared to

the original checksum to ensure that the file was not corrupted during transmission.

 Efficiency: Checksums are efficient for detecting changes in large files because they provide a

fixed-size representation of the file's content. This makes it easier to compare checksums than

to compare the entire contents of large files.

While checksums are useful for detecting differences in files, they do have limitations. For example,

checksum collisions (different files having the same checksum) are possible, although rare with modern

algorithms. Additionally, checksums do not provide information on the specific changes that occurred

in a file, only that the file contents are different. Checksum is the error detection method used by upper

layer protocols and is considered to be more reliable than LRC, VRC and CRC. This method makes the

use of Checksum Generator on Sender side and Checksum Checker on Receiver side.

B. Flowchart

A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

6

Fig. 3.3 Flowchart of the key agreement protocol mechanism

C. Libraries used

 OS Module

In our proposed system we are working with file on local system so this module is important

for us to implement the directory functionality of the file system. The OS module in

Python provides functions for interacting with the operating system. OS comes under Python’s

standard utility modules. This module provides a portable way of using operating system-

dependent functionality. The *os* and *os.path* modules include many functions to interact

with the file system.

 Boto3

Boto3 is the Amazon Web Services (AWS) SDK for Python, which allows Python developers

to interact seamlessly with AWS services like Amazon S3 and Amazon EC2. Boto3 simplifies

the way you interact with AWS, offering a Pythonic programming approach to managing cloud

resources.

 Time

As the name suggests Python time module allows to work with time in Python. It allows

functionality like getting the current time, pausing the Program from executing, etc. So before

starting with this module, we need to import it. The time module comes with Python’s standard

utility module, so there is no need to install it externally. In our system we make the use of

timestamp functionality to provide the time in which the uploaded file was alter or open.

 json

Python JSON JavaScript Object Notation is a format for structuring data. It is mainly used

for storing and transferring data between the browser and the server. Python too supports JSON

with a built-in package called JSON. This package provides all the necessary tools for working

with JSON Objects including parsing, serializing, deserializing, and many more.

 hashlib

A Cryptographic hash function is a function that takes in input data and produces a statistically

unique output, which is unique to that particular set of data. The hash is a fixed-length byte

stream used to ensure the integrity of the data. In this article, you will learn to use the hashlib

module to obtain the hash of a file in Python. The hashlib module is a built-in module that comes

by default with Python’s standard library so there is no need to install it manually. The hashlib

module implements a common interface for many secure cryptographic hash and message digest

algorithms. There is one constructor method named for each type of hash. All return a hash

object with the same simple interface. Constructors for hash algorithms are always present in

this module.

A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

7

D. MD5 Hash

In real life scenario, hash functions are used heavily in cryptographic algorithms, in digital signatures,

fingerprints, to store password and many more areas. As a python programmer, we need hash functions

to check the duplicity of data or files, to check data integrity when you transmit data over a public

network, storing the password in a database etc. In our project we make the use of hash function accepts

sequence of bytes and returns 128-bit hash value, usually used to check data integrity but has security

issues.

III. CONCLUSION AND FUTURE SCOPE

Across all the file synchronization methods, checksum method works better for files where maximum

similarity is found. De-duplication works better for similar types of files, choosing a best chunk size

may produce the maximum number of chunks. So, the probability of getting maximum number of

similar chunks depends upon the chunk size. So, finding best chunk size is itself a problem and it varies

according to the type of files used for synchronization. Proposed system resolves the issue of file

synchronization at some extent by identifying the change in the content and warning the user before its

opening. One more problem is to reconstruct the same file in the destination device using the same

chunk. Chunking method works well over all file synchronization technique. Apart from other file

synchronization methods,

REFERENCES

[1] Elod P. Csirmaz and Laszlo Csirmaz, “Synchronizing Many Filesystems in Near Linear Time”, arXiv:2302.09666v2 [cs.IT] 17 May

2023

[2] Martin Dürsch, “Scaling Real-time Collaborative Editing in a Cloud-based Web App”, Erlangen, 19 April 2023

[3] João Gonçalves Martins, “Query Processing in Cloud Databases with Partial Replication” NOVA University Lisbon March, 2023

[4] Masoumeh Hajvali, Sahar Adabi, Ali Rezaee and Mehdi Hosseinzadeh, “Decentralized and scalable hybrid scheduling‑clustering

method for real‑time applications in volatile and dynamic Fog‑Cloud Environments” (2023) 12:66, https://doi.org/10.1186/s13677-

023-00428-4, Journal of Cloud Computing: Advances, Systems and Applications

[5] Elod P. Csirmaz 1,_ and Laszlo Csirmaz, “Data Synchronization: A Complete Theoretical Solution for Filesystems” Future Internet

2022, 14, 344. https://doi.org/10.3390/fi14110344

[6] Novak Boˇskov, Ari Trachtenberg, and David Starobinski. Enabling costbenefit analysis of data sync protocols, 2023.

[7] Elod P. Csirmaz and Laszlo Csirmaz. Data synchronization: A complete theoretical solution for filesystems. Future Internet, 14(11),

2022.

[8] Elod Pal Csirmaz. Algebraic file synchronization: Adequacy and completeness. CoRR, abs/1601.01736, 2016.

[9] John Day-Richter. What’s different about the new Google Docs: Making collaboration fast, 2010.

[10] https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html, Last accessed on 12 Jan, 2023.

[11] Shimon Even. Graph Algorithms. Cambridge University Press, USA, 2nd edition, 2011.

[12] JiuLing Feng, XiuQuan Qiao, and Yong Li. The research of synchronization and consistency of data in mobile environment. In 2012

IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, volume 02, pages 869–874, 2012.

[13] Rusty Klophaus. Riak core: Building distributed applications without shared state. In ACM SIGPLAN Commercial Users of Functional

Programming, CUFP ’10, New York, NY, USA, 2010. Association for Computing Machinery.

A R DIGITECH
International Journal Of Engineering, Education And Technology (ARDIJEET)
www.ardigitech.in ISSN 2320-883X, VOLUME 12 ISSUE 02 01/04/2024

8

[14] Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao Liu, Ben Y. Zhao, Cheng Jin, Zhi-Li Zhang, and Yafei Dai. Efficient batched

synchronization in dropbox-like cloud storage services. In David Eyers and Karsten Schwan, editors, Middleware 2013, pages 307–

327, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[15] Erik Liu. A CRDT-based file synchronization system. Master’s thesis, Department of Computer Science, 2021.

[16] Jakub T. Mo´scicki and Luca Mascetti. Cloud storage services for file synchronization and sharing in science, education and research.

Future Generation Computer Systems, 78:1052–1054, 2018.

[17] Agustina Ng and Chengzheng Sun. Operational transformation for real-time synchronization of shared workspace in cloud storage.

In Proceedings of the 2016 ACM International Conference on Supporting

[18] Group Work, GROUP ’16, page 61–70, New York, NY, USA, 2016.

[19] Andrea Petroni, Francesca Cuomo, Leonisio Schepis, Mauro Biagi, Marco Listanti, and Gaetano Scarano. Adaptive data

synchronization algorithm for iot-oriented low-power wide-area networks. Sensors, 18(11):4053, Nov 2018.

[20] Nuno Preguic¸a, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A commutative replicated data type for cooperative editing.

In Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems, ICDCS ’09, page 395–403, USA,

2009. IEEE Computer Society.

[21] Nuno M. Preguic¸a. Conflict-free replicated data types: An overview. CoRR, abs/1806.10254, 2018.

[22] Yuechen Qian. Data synchronization and browsing for home environments. PhD thesis, Mathematics and Computer Science, 2004.

[23] Bin Shao, Du Li, Tun Lu, and Ning Gu. An operational transformation based synchronization protocol for web 2.0 applications. In

Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, CSCW ’11, page 563–572, New York, NY,

USA, 2011. Association for Computing Machinery.

[24] Marc Shapiro, Nuno Preguic¸a, Carlos Baquero, and Marek Zawirski. A comprehensive study of Convergent and Commutative

Replicated Data Types. Technical Report 7506, INRIA, Inria-Centre Paris-Rocquencourt, jan 2011.

[25] Marc Shapiro, Nuno M. Preguic¸a, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data types. In Xavier D´efago,

Franck Petit, and Vincent Villain, editors, Stabilization, Safety, and Security of Distributed Systems - 13th International Symposium,

SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings, volume 6976 of Lecture Notes in Computer Science, pages 386–

400. Springer, 2011.

[26] Jian Shen, Member, IEEE, Tianqi Zhou, Debiao He, Yuexin Zhang, Xingming Sun, Senior Member, IEEE, and Yang Xiang, Senior

Member, IEEE, “Block Design-based Key Agreement for Group Data Sharing in Cloud Computing”, 1545-5971 (c) 2017 IEEE.

Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information

[27] Mehdi Bahrami 1 and Mukesh Singhal 2, “A Dynamic Cloud Computing Platform for eHealth Systems”, 2015 IEEE 17th International

Conference on e-Health Networking, Applications and Services (Healthcom)

[28] Tessema Mengistu∗, Abdulrahman Alahmadi∗, Abdullah Albuali, Yousef Alsenani, and Dunren Che, “A "No Data Center" Solution

to Cloud Computing”, 2017 IEEE 10th International Conference on Cloud Computing

[29] Zhao Tianhai,” The Key of Application Software Service in Science Cloud Computing”, 2021 IEEE 6th International Conference on

Cloud Computing and Big Data Analytics

[30] Wang Xiaoyu, Gao Zhengming , “Research and Development of Data Security Multidimensional Protection System in Cloud

Computing Environment” , 2020 International Conference on Advance in Ambient Computing and Intelligence (ICAACI)

[31] Yanhong Shang1 and Jing Zhang,” Computer Multimedia Security Protection System Based on the Network Security Active Defense

Model”, Hindawi, Advances in Multimedia, Volume 2021, Article ID 8792105, 9 pages, https://doi.org/10.1155/2021/8792105

[32] L. Zhou, V. Varadharajan, and M. Hitchens, “Cryptographic rolebased access control for secure cloud data storage systems,”

Information Forensics and Security IEEE Transactions on, vol. 10, no. 11, pp. 2381–2395, 2015.

[33] F. Chen, T. Xiang, Y. Yang, and S. S. M. Chow, “Secure cloud storage meets with secure network coding,” in IEEE INFOCOM,

2014, pp. 673–681.

[34] D. He, S. Zeadally, and L. Wu, “Certificateless public auditing scheme for cloud-assisted wireless body area networks,” IEEE Systems

Journal, pp. 1–10, 2015.

[35] J. Shen, H. Tan, S. Moh, I. Chung, and J. Wang, “An efficient rfid authentication protocol providing strong privacy and security,”

Journal of Internet Technology, vol. 17, no. 3, p. 2, 2016.

[36] Michał Antkiewicz and Krzysztof Czarnecki. Design Space of Heterogeneous Synchronization, pages 3–46. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008.

